
Space Partitions
BSP & Quadtree

236719 Computational Geometry – Tutorial 5

ZHENG Yufei
郑羽霏

נג'יופיי ז

Jan. 24, 2017

Motivation
◎ Hidden Surface Removal –

determine for each pixel on the screen the
object that is visible at that pixel

◎ 𝒛-buffer algorithm
○ maintains 2 buffers:

frame buffer stores for each pixel the intensity of the currently
visible object
𝒛-buffer stores the 𝐳-coordinate of the point on the object that
is visible at the pixel

○ select a pixel
If 𝑧-coordinate of the object at that pixel < the 𝑧-coordinate in 𝑧-buffer,

frame buffer ← intensity of the new object
𝑧-buffer ← 𝑧-coordinate

Motivation – z-buffer Alg. vs. Painter’s Alg.

◎ Disadvantage of z-buffer Algorithm –
○ Extra storage needed for the z-buffer
○ Extra test on z-coordinate required for every pixel

covered by the object

◎ Painter’s algorithm
○ Sorting the objects according to their distance to the view

point (Avoid extra costs)
○ objects are scan-converted in depth-order

Motivation – Problems with Painter’s Alg.

◎ Sort the objects quickly

◎ Depth order may not always exist
○ cyclic overlap
○ Solutions – split one or more of the objects till depth

order exists for pieces.

◎ Binary space partition tree (BSP tree)

Binary Space Partition (BSP)
◎ BSP is obtained by recursively splitting the

plane with a line
○ Splitting lines partition the plane and cut objects into

fragments
○ Splitting stops when there is only one fragment in each

region

BSP for a set 𝑺 in ℝ𝒅– Definition
- Hyperplane ℎ: 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+𝑎𝑑𝑥𝑑

+ 𝑎𝑑+1 = 0
ℎ+ ≔ 𝑥1, 𝑥2, … , 𝑥𝑑 : 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+𝑎𝑑𝑥𝑑 + 𝑎𝑑+1 > 0
ℎ− ≔ 𝑥1, 𝑥2, … , 𝑥𝑑 : 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+𝑎𝑑𝑥𝑑 + 𝑎𝑑+1 < 0

- BSP tree is a defined as a binary tree 𝑇 with
the following properties:

1. If 𝑆 ≤ 1, 𝑇 is a leaf. The object fragment in 𝑆 (if exists) is
stored at this leaf.

2. If 𝑆 ≤ 1, root 𝑣 of 𝑇 stores a hyperplane ℎ𝑣.
Left child of 𝑣 is 𝑇− for the set 𝑆− ≔ ℎ𝑣

− ∩ 𝑠: 𝑠 ∈ 𝑆 ,
right child of 𝑣 is 𝑇+ for the set 𝑆+ ≔ ℎ𝑣

+ ∩ 𝑠: 𝑠 ∈ 𝑆 .

BSP
◎ A node in BSP and its corresponding convex

region

- 𝑆 = {𝑠1, … , 𝑠𝑛} is a set of 𝑛 non-intersecting line
segments in the plane

- Only consider lines containing one of the segments in 𝑆
as candidate splitting lines (auto-partitions)

Algorithm 2DBSP(𝑆)
- If 𝑆 ≤ 1

create 𝑇 with a single leaf node where 𝑆 is stored
- Else

𝑆− ≔ 𝑠 ∩ 𝑙 𝑠1
−: 𝑠 ∈ 𝑆 , 𝑇− ←2DBSP(S−)

𝑆+ ≔ 𝑠 ∩ 𝑙 𝑠1
+: 𝑠 ∈ 𝑆 , 𝑇+ ←2DBSP(S+)

create 𝑇 with root node 𝑣, left subtree 𝑇−, right
subtree 𝑇+, and 𝑆 𝑣 = 𝑠 ∈ 𝑆: 𝑠 ⊆ 𝑙 𝑠1

- Return 𝑇

BSP for line segments in ℝ𝟐 - Contruction

BSP Construction
- Difficult choice ⇒ random choice

Algorithm 2DRandomBSP(𝑆)
- Generate a random permutation 𝑆′ = 𝑠1, … , 𝑠𝑛 of set 𝑆
- 𝑇 ← 2DBSP(𝑆′)
- Return 𝑇

◎ Lemma: the expected number of fragments generated by
the algorithm 2DRandomBSP is 𝑂(𝑛 log 𝑛).

◎ Proof:
- Let 𝑠𝑖 be a fixed segment in 𝑆
- Analyze the expected number of other segments that

are cut when 𝑙(𝑠𝑖) is added

- Define the distance of a segment w.r.t. the fixed 𝑠𝑖

- Bound the probability that 𝑙(𝑠𝑖) cuts 𝑠𝑗

- Bound the expected total number of cuts generated by 𝑠𝑖

Proof Continued

- By linearity of expectation, conclude that the expected total
number of cuts generated by all segments is at most 2𝑛ln𝑛.

- Expected total number of fragments is bounded by
𝑛 + 2𝑛ln𝑛

Proof Continued

◎ Theorem: BSP of size 𝑂 𝑛 log 𝑛 can be computed in
expected time 𝑂 𝑛2log 𝑛

BSP for triangles in ℝ𝟑 - Construction
- 𝑆 = {𝑡1, … , 𝑡𝑛}is a set of 𝑛 non-intersecting triangles in ℝ𝟑

- Only use partition planes containing a triangles of 𝑆 (auto-
partitions)

Algorithm 3DBSP(𝑆)
- If 𝑆 ≤ 1

create 𝑇 with a single leaf node where 𝑆 is stored
- Else

𝑆− ≔ 𝑡 ∩ ℎ 𝑡1
−: 𝑡 ∈ 𝑆 , 𝑇− ← 3DBSP(S−)

𝑆+ ≔ 𝑡 ∩ ℎ 𝑡1
+: 𝑡 ∈ 𝑆 , 𝑇+ ← 3DBSP(S+)

create 𝑇 with root node 𝑣, left subtree 𝑇−, right
subtree 𝑇+, and 𝑆 𝑣 = 𝑡 ∈ 𝑆: 𝑡 ⊆ ℎ 𝑡1

- Return 𝑇

Quadtree
◎ Definition – a tree data structure in which

each internal node has exactly four children
◎ Used to divide a 2D region into more

manageable parts
◎ Nodes –

axis-aligned squares

Quadtree
- Starts as a single node

- Splits into 4 subnodes when
more objects are added

- object that cannot fully fit inside a
node’s boundary will be placed in
the parent node

- Continue subdividing till the
number of objects in each cell
is 𝑂(1)

Depth of Quadtrees of Point Sets
◎ Lemma: the depth of a quadtree of point set
𝑆 with minimal distance 𝑐 and bounding box

of side length 𝑠 is at most log
𝑠

𝑐
+

3

2
.

◎ Proof:

- Side length of a square at depth 𝑖 is
𝑠

2𝑖

- Maximum distance between 2 points inside a

square is the length of the diagonal,
2𝑠

2𝑖

- An internal node at the ‘second last level’
has at least 2 points, denote its depth 𝑑

Proof - Continue
- Internal node at depth 𝑖 must satisfy:

2𝑠

2𝑑
≥ 𝑐 ⇒ 𝑑 ≤ log2

2𝑠

𝑐
= log2

𝑠

𝑐
+

1

2

- Depth of leaf is at most 𝑑 + 1.

◎ If 𝑠 ≫ 𝑐, the tree is far from being balanced

