236719 Computational Geometry – Tutorial 5

Space Partitions BSP & Quadtree

ZHENG Yufei 郑羽霏 יופיי ז'נג

Jan. 24, 2017

Motivation

Idden Surface Removal –

determine for each pixel on the screen the object that is visible at that pixel

z-buffer algorithm

maintains 2 buffers:

frame buffer stores for each pixel the **intensity** of the currently visible object

z-buffer stores the z-coordinate of the point on the object that is visible at the pixel

select a pixel

If *z*-coordinate of the object at that pixel < the *z*-coordinate in *z*-buffer,

frame buffer ← intensity of the new object

z-buffer \leftarrow *z*-coordinate

Motivation – z-buffer Alg. vs. Painter's Alg.

Disadvantage of z-buffer Algorithm

- Extra storage needed for the z-buffer
- Extra test on z-coordinate required for every pixel covered by the object

Painter's algorithm

- Sorting the objects according to their distance to the view point (Avoid extra costs)
- objects are scan-converted in **depth-order**

Motivation – Problems with Painter's Alg.

- Sort the objects quickly
- Depth order may not always exist
- cyclic overlap
- Solutions split one or more of the objects till depth order exists for pieces.

Sinary space partition tree (BSP tree)

Binary Space Partition (BSP)

- BSP is obtained by recursively splitting the plane with a line
- Splitting lines partition the plane and cut objects into fragments
- Splitting stops when there is only one fragment in each region

BSP for a set *S* in \mathbb{R}^d – Definition

- Hyperplane h: $a_1x_1 + a_2x_2 + \dots + a_dx_d$ + $a_{d+1} = 0$
- $h^{+} \coloneqq \{(x_{1}, x_{2}, \dots, x_{d}) \colon a_{1}x_{1} + a_{2}x_{2} + \dots + a_{d}x_{d} + a_{d+1} > 0\}$ $h^{-} \coloneqq \{(x_{1}, x_{2}, \dots, x_{d}) \colon a_{1}x_{1} + a_{2}x_{2} + \dots + a_{d}x_{d} + a_{d+1} < 0\}$
- BSP tree is a defined as a binary tree *T* with the following properties:
- 1. If $|S| \le 1, T$ is a leaf. The object fragment in S (if exists) is stored at this leaf.
- 2. If $|S| \leq 1$, root v of T stores a hyperplane h_v . Left child of v is T^- for the set $S^- \coloneqq \{h_v^- \cap s : s \in S\}$, right child of v is T^+ for the set $S^+ \coloneqq \{h_v^+ \cap s : s \in S\}$.

BSP

A node in BSP and its corresponding convex region

 ℓ_2

 ℓ_3

BSP for line segments in \mathbb{R}^2 - Contruction

- $S = \{s_1, \dots, s_n\}$ is a set of n non-intersecting line segments in the plane
- Only consider lines containing one of the segments in S as candidate splitting lines (auto-partitions)
 Algorithm 2DBSP(S)
- **If** $|S| \le 1$

create T with a single leaf node where S is stored

Else

 $S^{-} \coloneqq \{s \cap l(s_{1})^{-} : s \in S\}, T^{-} \leftarrow 2\text{DBSP}(S^{-})$ $S^{+} \coloneqq \{s \cap l(s_{1})^{+} : s \in S\}, T^{+} \leftarrow 2\text{DBSP}(S^{+})$ create T with root node v, left subtree T^{-}, right subtree T^{+}, and $S(v) = \{s \in S : s \subseteq l(s_{1})\}$ Return T

 $\ell(s)$

BSP Construction

- Difficult choice \Rightarrow random choice

Algorithm 2DRandomBSP(*S*)

- Generate a random permutation $S' = s_1, \dots, s_n$ of set S'
- $T \leftarrow 2\text{DBSP}(S')$
- Return T
- Lemma: the expected number of fragments generated by the algorithm 2DRandomBSP is O(n log n).

Proof:

- Let *s_i* be a fixed segment in *S*
- Analyze the expected number of other segments that are cut when $l(s_i)$ is added

Proof Continued

- Define the distance of a segment w.r.t. the fixed s_i

 $\operatorname{dist}_{s_i}(s_j) = \begin{cases} \text{the number of segments intersecting} & \operatorname{if} \ell(s_i) \text{ intersects } s_j \\ \ell(s_i) \text{ in between } s_i \text{ and } s_j \\ +\infty & \operatorname{otherwise} \end{cases}$

- Bound the probability that $l(s_i)$ cuts s_j $\Pr[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\operatorname{dist}_{s_i}(s_j) + 2}$
- Bound the expected total number of cuts generated by s_i

E[number of cuts generated by s_i] \leq

$$\sum_{\substack{j\neq i}} \frac{1}{\operatorname{dist}_{s_i}(s_j) + 2}$$
$$2\sum_{k=0}^{n-2} \frac{1}{k+2}$$
$$2\ln n.$$

Proof Continued

- By linearity of expectation, conclude that the expected total number of cuts generated by all segments is at most $2n\ln n$.
- Expected total number of fragments is bounded by $n + 2n \ln n$

• **Theorem:** BSP of size $O(n \log n)$ can be computed in expected time $O(n^2 \log n)$

BSP for triangles in \mathbb{R}^3 - Construction

- $S = \{t_1, ..., t_n\}$ is a set of n non-intersecting triangles in \mathbb{R}^3
- Only use partition planes containing a triangles of S (autopartitions)

h(t)

Algorithm 3DBSP(S)

If $|S| \le 1$

create T with a single leaf node where S is stored

Else

 $S^{-} \coloneqq \{t \cap h(t_{1})^{-} : t \in S\}, T^{-} \leftarrow 3\text{DBSP}(S^{-})$ $S^{+} \coloneqq \{t \cap h(t_{1})^{+} : t \in S\}, T^{+} \leftarrow 3\text{DBSP}(S^{+})$ create *T* with root node *v*, left subtree *T^{-*, right subtree *T^{+*, and *S*(*v*) = $\{t \in S : t \subseteq h(t_{1})\}$ Return *T*

Quadtree

 Definition – a tree data structure in which each internal node has exactly four children
 Used to divide a 2D region into more manageable parts

Nodes –

axis-aligned squares

Quadtree

- Starts as a single node
- Splits into 4 subnodes when more objects are added
- object that cannot fully fit inside a node's boundary will be placed in the parent node
 - Continue subdividing till the number of objects in each cell is O(1)

Depth of Quadtrees of Point Sets

Lemma: the depth of a quadtree of point set
 S with minimal distance c and bounding box

of side length s is at most $\log\left(\frac{s}{c}\right) + \frac{3}{2}$.

Proof:

- Side length of a square at depth *i* is $\frac{s}{2^{i}}$
- Maximum distance between 2 points inside a square is the length of the diagonal, \$\frac{\sqrt{2s}}{2^i}\$
 An internal node at the 'second last level' has at least 2 points, denote its depth d

Proof - Continue

Internal node at depth *i* must satisfy:

$$\frac{\sqrt{2}s}{2^d} \ge c \Rightarrow d \le \log_2\left(\frac{\sqrt{2}s}{c}\right) = \log_2\left(\frac{s}{c}\right) + \frac{1}{2}$$

- Depth of leaf is at most d + 1.

 $^{\circ}$ If $s \gg c$, the tree is far from being balanced

