Space Partitions BSP \＆Quadtree

ZHENG Yufei郑羽霏
יופיי ד＇נג

Jan．24， 2017

Motivation

- Hidden Surface Removal determine for each pixel on the screen the object that is visible at that pixel
- z-buffer algorithm
- maintains 2 buffers:
frame buffer stores for each pixel the intensity of the currently visible object
z-buffer stores the z-coordinate of the point on the object that is visible at the pixel
select a pixel
If z-coordinate of the object at that pixel $<$ the z-coordinate in z-buffer, frame buffer \leftarrow intensity of the new object
z-buffer $\leftarrow z$-coordinate

Motivation - z-buffer Alg. vs. Painter's Alg.

Disadvantage of z-buffer Algorithm -

 Extra storage needed for the z-buffer- Extra test on z-coordinate required for every pixel covered by the object
© Painter's algorithm
Sorting the objects according to their distance to the view point (Avoid extra costs)
objects are scan-converted in depth-order

Motivation - Problems with Painter's Alg.

- Sort the objects quickly
- Depth order may not always exist
- cyclic overlap

- Solutions - split one or more of the objects till depth order exists for pieces.
- Binary space partition tree (BSP tree)

Binary Space Partition (BSP)

- BSP is obtained by recursively splitting the plane with a line
Splitting lines partition the plane and cut objects into fragments
Splitting stops when there is only one fragment in each region

BSP for a set S in \mathbb{R}^{d} - Definition

Hyperplane $h: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}$ $+a_{d+1}=0$
$h^{+}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right): a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}+a_{d+1}>0\right\}$
$h^{-}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right): a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}+a_{d+1}<0\right\}$
BSP tree is a defined as a binary tree T with the following properties:
If $|S| \leq 1, T$ is a leaf. The object fragment in S (if exists) is stored at this leaf.
2. If $|S| \leq 1$, root v of T stores a hyperplane h_{v}. Left child of v is T^{-}for the set $S^{-}:=\left\{h_{v}^{-} \cap s: s \in S\right\}$, right child of v is T^{+}for the set $S^{+}:=\left\{h_{v}^{+} \cap s: s \in S\right\}$.

BSP

- A node in BSP and its corresponding convex region

BSP for line segments in \mathbb{R}^{2} - Contruction

$S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of n non-intersecting line segments in the plane
Only consider lines containing one of the segments in S as candidate splitting lines (auto-partitions)
Algorithm 2DBSP(S)
If $|S| \leq 1$
create T with a single leaf node where S is stored
Else

$$
\begin{aligned}
& S^{-}:=\left\{s \cap l\left(s_{1}\right)^{-}: s \in S\right\}, T^{-} \leftarrow 2 \operatorname{DBSP}\left(\mathrm{~S}^{-}\right) \\
& S^{+}:=\left\{s \cap l\left(s_{1}\right)^{+}: s \in S\right\}, T^{+} \leftarrow 2 \operatorname{DBSP}\left(\mathrm{~S}^{+}\right)
\end{aligned}
$$

create T with root node v, left subtree T^{-}, right subtree T^{+}, and $S(v)=\left\{s \in S: s \subseteq l\left(s_{1}\right)\right\}$ Return T.

BSP Construction

Difficult choice \Rightarrow random choice

Algorithm 2DRandomBSP (S)
Generate a random permutation $S^{\prime}=s_{1}, \ldots, s_{n}$ of set S $T \leftarrow 2 \operatorname{DBSP}\left(S^{\prime}\right)$
Return T
Lemma: the expected number of fragments generated by the algorithm 2DRandomBSP is $O(n \log n)$.
Proof:
Let s_{i} be a fixed segment in S
Analyze the expected number of other segments that are cut when $l\left(s_{i}\right)$ is added

Proof Continued

Define the distance of a segment w.r.t. the fixed s_{i}
$\operatorname{dist}_{s_{i}}\left(s_{j}\right)= \begin{cases}\text { the number of segments intersecting } & \text { if } \ell\left(s_{i}\right) \text { intersects } s_{j} \\ \ell\left(s_{i}\right) \text { in between } s_{i} \text { and } s_{j} & \text { otherwise } \\ +\infty & \end{cases}$
Bound the probability that $l\left(s_{i}\right)$ cuts s_{j}
$\operatorname{Pr}\left[\ell\left(s_{i}\right)\right.$ cuts $\left.s_{j}\right] \leqslant \frac{1}{\operatorname{dist}_{s_{i}}\left(s_{j}\right)+2}$
Bound the expected total number of cuts generated by s_{i}
$\mathrm{E}\left[\right.$ number of cuts generated by $\left.s_{i}\right] \leqslant \sum_{j \neq i} \frac{1}{\operatorname{dist}_{s_{i}}\left(s_{j}\right)+2}$

$$
\begin{aligned}
& \leqslant 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \\
& \leqslant 2 \ln n
\end{aligned}
$$

Proof Continued

By linearity of expectation, conclude that the expected total number of cuts generated by all segments is at most $2 n \ln n$.

Expected total number of fragments is bounded by $n+2 n \ln n$

- Theorem: BSP of size $O(n \log n)$ can be computed in expected time $O\left(n^{2} \log n\right)$

BSP for triangles in \mathbb{R}^{3} - Construction

$S=\left\{t_{1}, \ldots, t_{n}\right\}$ is a set of n non-intersecting triangles in \mathbb{R}^{3} Only use partition planes containing a triangles of S (autopartitions)

Algorithm 3DBSP(S)

If $|S| \leq 1$

create T with a single leaf node where S is stored Else

$$
\begin{aligned}
& S^{-}:=\left\{t \cap h\left(t_{1}\right)^{-}: t \in S\right\}, T^{-} \leftarrow 3 \operatorname{DBSP}\left(\mathrm{~S}^{-}\right) \\
& S^{+}:=\left\{t \cap h\left(t_{1}\right)^{+}: t \in S\right\}, T^{+} \leftarrow 3 \operatorname{DBSP}\left(\mathrm{~S}^{+}\right)
\end{aligned}
$$

create T with root node v, left subtree T^{-}, right subtree T^{+}, and $S(v)=\left\{t \in S: t \subseteq h\left(t_{1}\right)\right\}$
Return T

Quadtree

- Definition - a tree data structure in which each internal node has exactly four children
- Used to divide a 2D region into more manageable parts
- Nodes -
axis-aligned squares

Quadtree

Starts as a single node
Splits into 4 subnodes when more objects are added object that cannot fully fit inside a node's boundary will be placed in the parent node

Continue subdividing till the number of objects in each cell is $O(1)$

Depth of Quadtrees of Point Sets

- Lemma: the depth of a quadtree of point set S with minimal distance c and bounding box of side length s is at most $\log \left(\frac{s}{c}\right)+\frac{3}{2}$.
- Proof:

Side length of a square at depth i is $\frac{s}{2^{i}}$ Maximum distance between 2 points inside a square is the length of the diagonal, $\frac{\sqrt{2} s}{2^{i}}$ An internal node at the 'second last level' has at least 2 points, denote its depth d

Proof - Continue

Internal node at depth i must satisfy:
$\frac{\sqrt{2} s}{2^{d}} \geq c \Rightarrow d \leq \log _{2}\left(\frac{\sqrt{2} s}{c}\right)=\log _{2}\left(\frac{s}{c}\right)+\frac{1}{2}$
Depth of leaf is at most $d+1$.

- If $s \gg c$, the tree is far from being balanced

